Chapter 8
The Reaction-Diffusion Equations

Readion-diffusion (RD) equations arise naturally in systems consisting o many
interading comporents, (e.g., chemicd readions) and are widely used to describe
pattern-formation pkenomenain variety of biologicd, chemicd and physicd sys
tems. The principal i ngredients of all these modelsare equation o the form

du =DO%u+R(u), (8.1)

whereu = u(r,t) isavedor of concentration variables, R(u) describesalocd reae
tion kinetics andthe L aplaceoperator (02 ads onthe vedor u comporentwise. D de-
notes adiagoral diff usion coefficient matrix. Note that we suppcse the system (8.1)
to beisotropic and uriform, so D is represented by a scdar matrix, independent on
coordinates.

8.1 Reaction-diffusion equationsin 1D

In the following sedions we discuss different nortrivial solutions of this g/s-
tem (8.1) for different number of comporents, starting with the case of one com-
porent RD system in one spatial dimension, namely

U = DU+ R(U), (8.2)

where D = const. Suppacse, that initia distribution u(x,0) is given on the whole
spaceinterval X € (—oo, +00).

8.1.1 The FKPP-Equation

Investigation in this field starts form the dasscd papers of Fisher [17] and Kol-
mogarov, Petrovsky and Piskundf [ 25 motivated by popuiation dyremics isales,
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where authorsarrived at amodified diff usion equation:
du(x, t) = DAZu(x,t) + R(u), (8.3)

with a nonlinea sourceterm R(u) = u— u?. A typicd solution o the Eqg. (8.3) is
a propagating front, separating two nonrequili brium homogeneous dates, one of
which (u= 1) is gable and ancther one (u= 0) isunstable [10, 13, 51]. Such fronts
behavior is often said to be front propagation into unstable state and fronts as such
arereferred to as waves (or fronts) of transition from an unstable state.

Initially the subjedt was discussed and investigated mostly in mathematica soci-
ety (see e.q., [16] where nonlinea diff usionequationwas discussed in detail s). The
interest in physics in these type of fronts was gimulated in the ealy 1980 by the
work of G. Dee and coworkers onthe theory of dendritic solidificaion[12]. Exam-
ples of such fronts can be foundin various physicd [28, 52], chemicd [43, 14] as
well asbhiologicd [3] systems.

Noticethat for Eq. (8.3) the propagating front always relaxes to a unique shape
and velocity

¢ =2vD, (8.4)

if theinitia profileiswell-locdized [1, 2, 50].

Numerical treatment

Let us consider Eq. (8.3) and suppcse that initial distributionu(x,0) = f(x) aswell
as no-flux boundry condtions are given. We can try to apply an implicit BTCS-
method (7.13) (seeChapter 7) for the linea part of the equation, taking the norlin-
eailty explicitly, i.e.,

utt—ul ul -2yttt

i =D i+1
At Ax2

where R(uij) = uij - (uij)z. We can rewrite the last equation to the matrix form
AUt =u" 4 At-RUM), (8.5)

where matrix Aisatridiagoral M + 1 x M + 1 matrix of the form

1+2a|-2a] 0 ...0

-a 1+2a —-a ...0
A= 0 —a 14+2a ...0 |,

a = DAt/ AxX2. Theboxed elementsindicae the influenceof no-flux boundry con-
ditions.
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Fig. 8.1 Numericd solution o
of (8.3) cdculated with the 0.
method (8.5) for six dif- o A
ferent time moments t = -50 50

X O

0, 100, 200, 400, 600, 800.

Asanexample, let us olve Eq. (8.3) ontheinterval x € [—L, L] withthescheme(8.5).
Parameters are:

Space interval L=50

Space discretization step|[Ax=0.2

Time discretization step |[At=0.05

Anmount of tine steps T =800
Di ffusion coefficient D=1
Initial distribution f(x) = 0.05exp(—5x?)

Numericd solution for six diff erent time momentsis shown onFig. (8.1). One can
see that a small locd initia fluctuation aroundu = 0 leals to an instability, that
developsin anonlinea way: afront propagates away from theinitial perturbation.
Finally the uniform stable state with u = 1 is establi shed onthe whole spaceinterval.

8.1.2 Switching waves

Ancther important class of one-comporent RD systems is ©-cdled bistable sys-
tems. They possesstwo stable states, say u=u_ andu = u,, separated by an ursta-
ble state u = ug.

An example of bistable system is the Zeldovich—Frank—Kamenetsky—Equetion,
namely Eqg. (8.2) with the readionterm

Ru=ul-u(u-g), Be(01),
describing the flame propagation [54]
U =Dux+u(l—u)(u—p8), Be(0,1). (8.6)

The fundamental form of a pattern in bistable infinite one-comporent media is a
trigger wave, which represents a propagating front of transition from one station-
ary state into the other. In the literature other nomenclature, e.g., switching waves



is aso used. The propagation velocity of aflat front is uniquely determined by the
properties of the bistable medium. Indeed, moving to a frame, moving with a con-
stant velocity & := x— ct, and considering pertial solution o theformu = u(&) one
obtains an equation

DU{E + CU{ + R(U) =0
with boundry condtions

u(é — —)=u_, U(é — 4o) =u;.
_ N

Introducingthe potential R(u) = =5~ one can show that in this stuation the veloc-
ity of the front can be determined as [16]

V() -V

T
J (ug)*dé§

The numerator of the last equation uriquely defines the velocity diredion. In par-
ticular, if V(u;y) =V (u-) the front velocity equals zero, so stationary front is also
a solution in histable one-comporent media. However, the locdized states in form
of adomain, which can be produced by a mnredion o two fronts propagatingin
oppdsite diredions, are normally unstable. Indeed, for the abitrary choice of pa
rameters one state (V (u;) or V(u_)) will be dominated. This causes either coll apse
or expansion o the two-front solution.

Example 1: Moving fronts

Let us slve Eq. (8.6) ontheinterval x € [—L, L] with no-flux boundry condtions
by means of numericd scheme (8.5). Other parameters are:

Space interval L=10
Space discretization step||Ax=0.04
Time discretization step |[At=0.05
Amount of time steps T =150
Di f fusi on coefficient D=1

Consider four diff erent cases, correspondngto diff erent behaviors of the front:

a) A front movingto theright: 8 = 0.8;
b) A front movingto theleft: 3 = 0.1.
Initial distribution are:

U(x,0) u_, for xe[-L,0
" luy, for xe(0,L].

¢) Front collision: 8 =0.8;



Fig. 8.2 Numericd solution d Eq. (8.6), cdculated with the scheme (8.5) for four diff erent cases:
a) afront, propagating to the right for 8 = 0.8; b) a front, propagating to the left for 3 = 0.1; c)
collision o two fronts, 8 = 0.8; d) scattering o two fronts, 8 = 0.1.

d) Front scatering: 3 = 0.1.
Initial distribution are:

u-, for xel-L,—L/3
u(x,0)=quy, for xe(-L/3,L/3)
u-, for xelL/3,L].

Results of the numerica cdculationis shown onFig. 8.2.

Example 2: Stationary fronts

Now let us consider a one-dimensional RD equation (8.6), describing a bistable
mediaforthe case f = —1,i.€,



w=Dux+u(l—u?), xe[-L,L]. (8.7)

Equation (8.7) hasthreestealy state solutions: two stable uy. = +1, separated with
an urstable state up = 0. One can cdculate the potential valuesat u = u.,

V(u-)=V(u;) =c=0.

That is, astationary front, conneding stable stealy state is expeded to be asolution
of the problem. Moreover, one can constuct alocdized puse by a mnredion o two
stable fronts. The form of the stationary front can be foundanalyticdly [16, 10],

namely
u(x) = tanh<%) .

From numericd point of view one can use again the scheme (8.5) for the readion
term R(u) = u— u. That is, let us olve Eq. (8.7) onthe interval x € [—L, L] with
no-flux boundry condtions. Parameters are:

Space interval L=10
Space discretization step||Ax=0.04
Ti me discretization step |[At=0.05
Amount of time steps T =100
Di f fusi on coefficient D=1

Initial distributionis:
a) A dtationary front:

u(x,0) = u_, for x<0,
" luy, for x>0.

b) A stationary pulse:

u_, for xel[-L,—-L/4],
u(x,0)=1quy, for xe(—L/4,L/4),

u_, for xelL/4,L].

Solutions of the problem, correspondngto bah cases are shown onFig. 8.3.

8.2 Reaction-diffusion equationsin 2D

8.2.1 Two-component RD systems: a Turing bifurcation

A Turing instability (or bifurcéion) involves the destabili zation o a homogeneus
solutionto form a static periodic spatial pattern (Turing pattern), whose wavelength
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Fig. 8.3 Numericd solution o Eq. (8.7) by means of scheme (8.5): a) A stable stationary front. b)
A stable stationary pulse.

dependsonthelocd readion kinetic parameters, diff usion coefficients of the system
andisitsintrinsic property. The hypahesis that just a differencein diffusion con
stants of comporents could be enoughto destabili ze the homogeneous lutionwas
put forward by A. M. Turing in 1952[49]. By studying the problem of biologicad
morphogenesis he showed that areadion-diff usionsystem with a diff erent diffusion
constants can autonamously producestationary spatial patterns.

We start our analysis of Turing instability from by considering a readion
diffusion system in general form, restricting ouself first to the cae of two com-
porents, i.e.,

du=D0%u+R(u) (8.8)

whereu = u(r,t) = (u,v)T isavedor of concentration variables, R(u) = (f(u,v),g(u,v))"
describes as before aloca readion kinetics and the Laplaceoperator (12 ads onthe
vedor u comporentwise. D denotes a diagoral diff usion coefficient matrix,

_ Du 0
D= < > DV) |
Let up = (up, Vo) be ahomogeneous solution (or steady-state solution) of the sys-

tem (8.8), i.e. f(up,Vo) = g(up,Vvp) = 0. Suppcee that this lutionis dable in ab-
sence of diffusion, namely the red parts of all eigenvalues of the Jacobi matrix

fu f
A=(0R/0U)y—y, = " V),
( / )U Uo (gu gv)
describing the locd dynamics of the system (8.8) are lessthat zero. For the case of
a2x2 matrix thisis equivalent to the simple well -known condtionfor thetrace ad
the determinant of the matrix A (Vieta's formula), namely



Sp(A) =AM +Ar= fu+gv< 0,

8.9
det(A):A]_AZZZ fugv—fvgu>o. ( )

Keeping Eg. (8.9) in mind, let us ®eif the presence of diffusion term can change
the stability of ug. To thisend, consider a small perturbationd, i.e. u = ug+ U and
the correspondnglinea equationfor it:

Al =DO%+ATU. (8.10)
After decomposition {i into modes @i ~ ax€*" we get the equation
i = Ba, (8.11)
where B = A —k?D.

As mentioned abowe, the stability condtions for the system (8.11) with a 2x2
matrix B can be written as:

Sp(B) <0 Vk,
det(B) >0 Vk, (812
where
Sp(B) = —(Du+Dy) K+ Sp(A), (8.13)
det(B) = DyDyk* — (Dygy -+ Dy fu) k? + det(A) . (8.14)

Notice, that for k = 0 the condtions (8.12) are equivalent to the stability crite-
rion (8.9) for the locd dynamics. In particular this impliesthat Sp(B) < O for all k
(seegray curvein Fig. 8.4 for ill ustration), so the instabilit y of the homogeneous -
lution can occur only dueto violation o the secondcondtion (8.12), that is, det(B)
shoud be equal to zero for some k. It means that the instability occur at the point
wherethe equation det(B) = 0 hasamultipleroat. To findit we can simply cdculate
aminimum of the function T (k) = det(B):

T'(k) = 4DyDyk® —2(Dygy+ Dy f)k=0 = k21<h+&).
2\D, ' Dy
From the last equation can be seen that the situation described aboveis possbleif
Dugv+ Dy fy > 0. (8.15)

In this case the aiticd wavenumber is

N E YT
ke = 2<DU+DV) (8.16)

and instability occurs on condtionthat



Fig. 8.4 Threedifferent cases det(B)

of dependence of the function p,
T (k) = det(B) on the wave
vedor k are presented. (a) \—,/ﬂn

the function T (k) has no
roots, so the stability of ug ©
is not affected as well asin 0 T k
the case (b). T(k) > O for

al k, but minimum of this
function exists. (c) T(k) =0
for k =k, indicaingthe onset
of instability.

2
Tk) <0 = Ié=<%<é—t+g—vv>) >g‘jt§v. (8.17)

The instability scenario, described aboweisill ustrated in Fig. 8.4, where threedif-
ferent cases of dependenceof the function T (k) = det(B) on the wave vedor k are
presented. In Fig. 8.4 (8) the function T (k) has no roats, so the stability of ug is
not affeded as well asin the case (b). Here T (k) > 0 for all k, but minimum of this
function exists. Findly, in Fig. 8.4 (c) T (k) = 0 for k = k¢, indicaing the onset of
instability.

Hence, thefull system of the condtionsfor instability of the homogeneous lu-
tionug is

fu+gv<O,
fugv — fvgu > 0,
Duygv+ Dyfy >0, (8.18)

f 2 4
(_u+&) , AdetA

DU DV Du DV '

A detailed description d the medhanism of Turing instability can also be found
in[32 31, 23.

While the condtions for the onset of a Turing bifurcdion are rather simple, the
determination o the nature of the pattern that is ®leded is amore difficult problem
since beyond the bifurcaion pdnt a finite band o wavenumbers is unstable. Pat-
tern seledionis usually approached by studying amplitude equations that are valid
nea the onset of the instability. To determine which modes are seleded, modes and
their complex conjugates are usually treaed in pairs  that the concentrationfield,
expanded about the homogeneous lution, reads

=}

u(r,t) =uo+ ¥ (Aj(t)eN" +c.c.),
=1

wherek; are diff erent wavevedors such that |K;| = ke. In one dimensional spacethe
Situation is rather simple, as result of the instability is represented by a periodic in



spacestructure. In two spacedimension thisform leads to stripes for n = 1, rhombi
(or squares) for n = 2 and hexagons for n = 3. The pattern and wavelength that is
seleded dependson coefficientsin the nonlinear amplit ude equationfor the complex
amplitude A, but some conclusions abou seleded pattern can be made using, e.g.,
symmetry arguments. In particular, in the case of hexagoral pattern, in which three
wave vedors are mutually situated at an angle of 27117/3, i.e., k1 + ko + k3 =0, the
absenceof inversionsymmetry (u — —u) leadsto additional quadratic norlineaity
inthe amplitude equation. Thelatter, initsturn, endsin afad, that hexagoral pattern
has the maximum growth rate nea the threshold andistherefor preferred (for detail s
see[10]).

The general procedure in detail s for the derivation of such amplitude equations
based onmode projediontechniquescan be foundin [19]. Ancther approach, using
multi scde expansionwas evolvedin [33].

8.2.1.1 TheBrusslator Model

The Brusslator model is a dasdcd readion-diffusion system, proposed by |. Pri-
gogne and co-workers in Brusels in 1971[18, 34]. The model describes sme
chemicd readionwith two comporents

w = DyAu+a— (b+1)u+uv, (8.19)
vt = Dy Av+bu—u?v. (8.20)
Hereu=u(x,y,t), v=v(x,y,t), &, b are posotive mnstants. The stealy state solution
is
w=a, V _b
0= I 0= a

For the system (8.19) the matrices D, A and B are given by
(D4 0O _(b-1 a2
o= (50) 2 %)

B b—1—Dyk? a2
—b —Dyk¥—a?)"

Suppase that the system (8.19) islocd stable, i.e.,
Sp(A)=b—-1-a%<0,
Det(A) = —(b—1)a’+a’b=a > 0.

Note that the violation d the first condtion abowe leals to tthe Hopf bifurcaion,
i.e., the onset of Hopf instability is

Sp(A) >0 b>by =1+a%.
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Fig. 8.5 Bifurcaion dagram -
in (a, b) parameter space 10}
indicating the onset of Hopf

(blue line) and Turing (red ——

line) instabiliti es. Here Dy, = ok,

5 Dy =12

The aiticd wavenumber is

1/b-1 a2
o= §<D D_)'
u \
The existenceof k; is equivalent to the foll owing condtion

Duz Du
b>1+a?+1= " <1,
>t pra+l= o<

Theinstability occurs, if

Det(B(ks)) <0< b>br = (1+a\/[D):t)2.

Hence, the condtions(8.18) for the system (8.19) takes the form

b<by=1+a%,

Dy ?
b =(1 —
> br <+a Dv> ,
Dy
— < 1.
D, =

(8.21)

On Fig. 8.5 bah by (blue line), by (red line) as functions of a are shown. The
thresholds of these two instabiliti es coincide & codimensional-two Turing-Hopf

point by = by
2\/o

1-0

)

where 0 = D, /Dy.

From a numericd point of view, one can apply the scheme (7.19), taking the

norlinea terms explicitly. Parameters are



Space interval L=50
Space discretization step|[Ax=0.5
Time discretization step [|[At=0.05

Amount of tinme steps T = 4000
Di f fusion coefficients D,=5D,=12
Reaction kinetics a=3,b=9

Theresult of cdculationis shown onFig. 8.6. The uniform state becomes unstable
in favor of finite wave number perturbation. That is, starting with random perturb
homogeneous lution (seeFig. 8.6 (a)) one obtains a high-amplit ude stripe pattern,
shownin Fig. 8.6 (c).

Fig. 8.6 Stripe pattern, obtained as a numerica solution o Eqg. (8.19) by means of the modified
ADI scheme (7.19) for threedifferent time moments: @) t = 0; b) t = 200Q c) t = 4000Q



