
Chapter 8
TheReaction-Diffusion Equations

Reaction-diffusion (RD) equations arise naturally in systems consisting of many
interacting components, (e.g., chemical reactions) and are widely used to describe
pattern-formation phenomena in variety of biological, chemical and physical sys-
tems. Theprincipal ingredientsof all thesemodelsare equation of the form

∂tu = D∇2u+R(u) , (8.1)

whereu = u(r , t) isavector of concentration variables, R(u) describesa local reac-
tion kineticsandtheLaplaceoperator ∇2 actsonthevector u componentwise. D de-
notesadiagonal diffusioncoefficient matrix. Note that wesupposethesystem (8.1)
to be isotropic and uniform, so D is represented by a scalar matrix, independent on
coordinates.

8.1 Reaction-diffusion equations in 1D

In the following sections we discuss different nontrivial solutions of this sys-
tem (8.1) for different number of components, starting with the case of one com-
ponent RD system in onespatial dimension, namely

ut = Duxx + R(u) , (8.2)

where D = const. Suppose, that initial distribution u(x,0) is given on the whole
spaceinterval x ∈ (−∞, +∞).

8.1.1 The FKPP-Equation

Investigation in this field starts form the classical papers of Fisher [17] and Kol-
mogorov, Petrovsky and Piskunoff [ 25] motivated by population dynamics issues,
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where authorsarrived at a modified diffusionequation:

∂tu(x, t) = D∂ 2
x u(x,t)+ R(u) , (8.3)

with a nonlinear source term R(u) = u− u2. A typical solution of the Eq. (8.3) is
a propagating front, separating two non-equili brium homogeneous states, one of
which (u = 1) is stable andanother one(u = 0) isunstable [10, 13, 51]. Such fronts
behavior is often said to be front propagation into unstable state and frontsas such
are referred to as waves (or fronts) of transition from an unstable state.

Initially thesubject wasdiscussed and investigated mostly in mathematical soci-
ety (see, e.g., [16] wherenonlinear diffusionequationwasdiscussed in details). The
interest in physics in these type of fronts was stimulated in the early 1980s by the
work of G. Dee andcoworkerson the theory of dendritic solidification [12]. Exam-
ples of such fronts can be foundin various physical [28, 52], chemical [43, 14] as
well asbiological [3] systems.

Noticethat for Eq. (8.3) the propagating front always relaxes to a unique shape
and velocity

c∗ = 2
√

D, (8.4)

if the initial profile iswell -localized [1, 2, 50].

Numerical treatment

Let us consider Eq. (8.3) andsuppose that initial distributionu(x,0) = f (x) as well
as no-flux boundary conditions are given. We can try to apply an implicit BTCS-
method(7.13) (seeChapter 7) for the linear part of the equation, taking the nonlin-
earilty explicitly, i.e.,

u j+1
i −u j

i

△t
= D

u j+1
i+1 −2u j+1

i + u j+1
i−1

△x2 + R(u j
i ) ,

whereR(u j
i ) = u j

i − (u j
i )

2. We can rewrite the last equation to the matrix form

Aun+1 = un +△t ·R(un) , (8.5)

wherematrix A is a tridiagonal M +1×M+1 matrix of the form

A =


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
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

,

α = D△t/△x2. Theboxed elementsindicatetheinfluenceof no-flux boundary con-
ditions.



Fig. 8.1 Numerical solution
of (8.3) calculated with the
method (8.5) for six dif-
ferent time moments t =
0, 100, 200, 400, 600, 800.
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Asanexample, let us solveEq. (8.3) ontheinterval x∈ [−L, L] with thescheme(8.5).
Parametersare:

Space interval L = 50
Space discretization step △x = 0.2
Time discretization step △t = 0.05
Amount of time steps T = 800
Diffusion coefficient D = 1
Initial distribution f (x) = 0.05exp(−5x2)

Numerical solution for six different time moments is shown onFig. (8.1). One can
see, that a small l ocal initial fluctuation aroundu = 0 leads to an instabilit y, that
develops in a nonlinear way: a front propagatesaway from the initial perturbation.
Finally theuniformstablestatewith u = 1 isestablished onthewholespaceinterval.

8.1.2 Switching waves

Another important classof one-component RD systems is so-called bistable sys-
tems. They possesstwo stablestates, say u = u− andu = u+, separated byan unsta-
blestate u = u0.

An example of bistable system is the Zeldovich–Frank–Kamenetsky–Equation,
namely Eq. (8.2) with the reaction term

R(u) = u(1−u)(u−β ) , β ∈ (0, 1) ,

describing theflamepropagation[54]

ut = Duxx + u(1−u)(u−β ) , β ∈ (0, 1) . (8.6)

The fundamental form of a pattern in bistable infinite one-component media is a
trigger wave, which represents a propagating front of transition from one station-
ary state into the other. In the literature other nomenclature, e.g., switching waves



is also used. The propagation velocity of a flat front is uniquely determined by the
properties of the bistable medium. Indeed, moving to a frame, moving with a con-
stant velocity ξ := x−ct, andconsidering partial solution of the form u = u(ξ ) one
obtainsan equation

Duξ ξ + cuξ + R(u) = 0

with boundary conditions

u(ξ →−∞) = u− , u(ξ → +∞) = u+ .

Introducingthepotential R(u) = ∂V (u)
∂u one can show that in this situation theveloc-

ity of the front can bedetermined as [16]

c =
V (u+)−V(u−)

+∞
∫

−∞
(uξ )2d ξ

.

The numerator of the last equation uniquely defines the velocity direction. In par-
ticular, if V (u+) = V (u−) the front velocity equals zero, so stationary front is also
a solution in bistable one-component media. However, the localized states in form
of a domain, which can be produced by a connection of two fronts propagating in
opposite directions, are normally unstable. Indeed, for the arbitrary choice of pa-
rametersonestate (V (u+) or V (u−)) will bedominated. Thiscauseseither collapse
or expansion of the two-front solution.

Example1: Moving fronts

Let us solve Eq. (8.6) on the interval x ∈ [−L, L] with no-flux boundary conditions
by meansof numerical scheme(8.5). Other parametersare:

Space interval L = 10
Space discretization step △x = 0.04
Time discretization step △t = 0.05
Amount of time steps T = 150
Diffusion coefficient D = 1

Consider four different cases, correspondingto different behaviorsof the front:

a) A front movingto the right: β = 0.8;
b) A front movingto the left: β = 0.1.

Initial distributionare:

u(x,0) =

{

u− , for x ∈ [−L, 0]

u+ , for x ∈ (0, L] .

c) Front colli sion: β = 0.8;
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Fig. 8.2 Numerical solution of Eq. (8.6), calculated with thescheme (8.5) for four different cases:
a) a front, propagating to the right for β = 0.8; b) a front, propagating to the left for β = 0.1; c)
colli sion of two fronts, β = 0.8; d) scattering of two fronts, β = 0.1.

d) Front scattering: β = 0.1.
Initial distributionare:

u(x,0) =











u− , for x ∈ [−L, −L/3]

u+ , for x ∈ (−L/3, L/3)

u− , for x ∈ [L/3, L] .

Resultsof thenumerical calculation is shown onFig. 8.2.

Example2: Stationary fronts

Now let us consider a one-dimensional RD equation (8.6), describing a bistable
media for the case β = −1, i.e,



ut = Duxx + u(1−u2) , x ∈ [−L, L] . (8.7)

Equation (8.7) has threesteady state solutions: two stable u± = ±1, separated with
an unstablestate u0 = 0. One can calculate thepotential valuesat u = u±,

V (u−) = V (u+) ⇒ c = 0.

That is, astationary front, connectingstablesteady state isexpected to be asolution
of theproblem. Moreover, one can constuct a localized pulseby a connection of two
stable fronts. The form of the stationary front can be foundanalytically [16, 10],
namely

u(x) = tanh

(

x− x0√
2D

)

.

From numerical point of view one can use again the scheme (8.5) for the reaction
term R(u) = u− u3. That is, let us solve Eq. (8.7) on the interval x ∈ [−L, L] with
no-flux boundary conditions. Parametersare:

Space interval L = 10
Space discretization step △x = 0.04
Time discretization step △t = 0.05
Amount of time steps T = 100
Diffusion coefficient D = 1

Initial distribution is:

a) A stationary front:

u(x,0) =

{

u− , for x ≤ 0,

u+ , for x > 0.

b) A stationary pulse:

u(x,0) =











u− , for x ∈ [−L, −L/4] ,

u+ , for x ∈ (−L/4,L/4) ,

u− , for x ∈ [L/4, L] .

Solutionsof the problem, correspondingto both casesareshown onFig. 8.3.

8.2 Reaction-diffusion equations in 2D

8.2.1 Two-component RD systems: a Turing bifurcation

A Turing instabilit y (or bifurcation) involves the destabili zation of a homogeneus
solution to form astatic periodic spatial pattern (Turing pattern), whosewavelength
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Fig. 8.3 Numerical solution of Eq. (8.7) by meansof scheme (8.5): a) A stablestationary front. b)
A stablestationary pulse.

dependsonthelocal reaction kineticparameters, diffusioncoefficientsof thesystem
and is its intrinsic property. The hypothesis that just a differencein diffusion con-
stantsof componentscould be enoughto destabili zethehomogeneous solutionwas
put forward by A. M. Turing in 1952[49]. By studying the problem of biological
morphogenesisheshowed that areaction-diffusionsystem with adifferent diffusion
constantscan autonomously producestationary spatial patterns.

We start our analysis of Turing instabilit y from by considering a reaction-
diffusion system in general form, restricting ourself first to the case of two com-
ponents, i.e.,

∂tu = D∇2u+R(u) (8.8)

whereu = u(r , t)= (u,v)T isavector of concentration variables, R(u)= ( f (u,v),g(u,v))T

describesasbefore alocal reaction kineticsandtheLaplaceoperator ∇2 actson the
vector u componentwise. D denotesadiagonal diffusioncoefficient matrix,

D =

(

Du 0
0 Dv

)

.

Let u0 = (u0,v0)
T be ahomogeneous solution (or steady-state solution) of the sys-

tem (8.8), i.e. f (u0,v0) = g(u0,v0) = 0. Suppose that this solution is stable in ab-
senceof diffusion, namely the real partsof all eigenvaluesof theJacobi matrix

A = (∂R/∂u)u=u0 =

(

fu fv

gu gv

)

,

describing the local dynamicsof the system (8.8) are lessthat zero. For the case of
a2×2 matrix this isequivalent to thesimplewell -known conditionfor thetrace and
thedeterminant of thematrix A (Vieta’s formula), namely



Sp(A) = λ1 + λ2 = fu + gv < 0,

det(A) = λ1λ2 = = fu gv − fv gu > 0.
(8.9)

Keeping Eq. (8.9) in mind, let us seeif the presenceof diffusion term can change
the stabilit y of u0. To this end, consider a small perturbation ũ, i.e. u = u0 + ũ and
the correspondinglinear equationfor it:

∂t ũ = D∇2ũ+A ũ . (8.10)

After decomposition ũ into modes ũ ∼ akeikr weget the equation

ȧk = Bak , (8.11)

whereB = A − k2D.
As mentioned above, the stabilit y conditions for the system (8.11) with a 2×2

matrix B can bewritten as:
Sp(B) < 0 ∀k ,

det(B) > 0 ∀k ,
(8.12)

where

Sp(B) = −(Du + Dv)k2 +Sp(A) , (8.13)

det(B) = Du Dv k4− (Du gv + Dv fu)k2 +det(A) . (8.14)

Notice, that for k = 0 the conditions (8.12) are equivalent to the stabilit y crite-
rion (8.9) for the local dynamics. In particular this implies that Sp(B) < 0 for all k
(seegray curvein Fig. 8.4 for ill ustration), so theinstabilit y of thehomogeneous so-
lutioncan occur only due to violation of thesecondcondition(8.12), that is, det(B)
should be equal to zero for some k. It means that the instabilit y occur at the point
wherethe equation det(B) = 0 hasamultipleroot. To findit we can simply calculate
a minimum of the functionT (k) = det(B):

T ′(k) = 4Du Dv k3−2(Du gv + Dv fu)k = 0 ⇒ k2 =
1
2

(

fu

Du
+

gv

Dv

)

.

From the last equationcan beseen that the situation described above ispossible if

Du gv + Dv fu > 0. (8.15)

In this case the critical wavenumber is

kc =

√

1
2

(

fu

Du
+

gv

Dv

)

(8.16)

and instabilit y occursonconditionthat



Fig. 8.4 Threedifferent cases
of dependenceof the function
T (k) = det(B) on the wave
vector k are presented. (a)
the function T (k) has no
roots, so the stabilit y of u0
is not affected as well as in
the case (b). T (k) > 0 for
all k, but minimum of this
function exists. (c) T (k) = 0
for k = kc, indicatingtheonset
of instabilit y.
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T (kc) ≤ 0 ⇔ k4
c =

(

1
2

(

fu

Du
+

gv

Dv

))2

>
detA
DuDv

. (8.17)

The instabilit y scenario, described above is ill ustrated in Fig. 8.4, where threedif-
ferent cases of dependenceof the function T (k) = det(B) on the wave vector k are
presented. In Fig. 8.4 (a) the function T (k) has no roots, so the stabilit y of u0 is
not affected as well as in the case (b). Here T (k) > 0 for all k, but minimum of this
function exists. Finally, in Fig. 8.4 (c) T (k) = 0 for k = kc, indicating the onset of
instabilit y.

Hence, the full system of the conditionsfor instabilit y of thehomogeneous solu-
tionu0 is

fu + gv < 0,

fugv − fvgu > 0,

Dugv + Dv fu > 0,
(

fu

Du
+

gv

Dv

)2

>
4detA
DuDv

.

(8.18)

A detailed description of the mechanism of Turing instabilit y can also be found
in [32, 31, 23].

While the conditions for the onset of a Turing bifurcation are rather simple, the
determination of thenatureof thepattern that is selected isamoredifficult problem
since beyond the bifurcation point a finite band of wavenumbers is unstable. Pat-
tern selection is usually approached by studying amplitude equations that are valid
near theonset of the instabilit y. To determinewhich modesareselected, modesand
their complex conjugatesare usually treated in pairs so that the concentrationfield,
expanded about thehomogeneous solution, reads

u(r ,t) = u0 +
n

∑
j=1

(

A j(t)e
ikj r + c.c.

)

,

wherek j aredifferent wavevectors such that |k j |= kc. In onedimensional spacethe
situation is rather simple, as result of the instabilit y is represented by a periodic in



spacestructure. In two spacedimension this form leads to stripes for n = 1, rhombi
(or squares) for n = 2 and hexagons for n = 3. The pattern and wavelength that is
selected dependsoncoefficientsin thenonlinear amplitude equationfor the complex
amplitudeA j, but some conclusionsabout selected pattern can be made using, e.g.,
symmetry arguments. In particular, in the case of hexagonal pattern, in which three
wave vectors are mutually situated at an angle of 2π/3, i.e., k1 + k2 + k3 = 0, the
absenceof inversionsymmetry (u 7→ −u) leads to additional quadratic nonlinearity
in the amplitude equation. Thelatter, in itsturn, endsin afact, that hexagonal pattern
hasthemaximumgrowth ratenear thethresholdandistherefor preferred (for details
see[10]).

The general procedure in details for the derivation of such amplitude equations
based onmodeprojectiontechniquescan befoundin [19]. Another approach, using
multi scale expansionwasevolved in [33].

8.2.1.1 The Brusselator Model

The Brusselator model is a classical reaction-diffusion system, proposed by I. Pri-
gogine and co-workers in Brussels in 1971[18, 34]. The model describes some
chemical reactionwith two components

ut = Du△u + a− (b +1)u+u2v , (8.19)

vt = Dv△v + bu−u2v . (8.20)

Hereu = u(x,y,t), v = v(x,y,t), a, b areposotive constants. Thesteady statesolution
is

u0 = a , v0 =
b
a

.

For thesystem (8.19) thematricesD, A andB aregiven by

D =

(

Du 0
0 Dv

)

, A =

(

b−1 a2

−b −a2

)

,

and

B =

(

b−1−Du k2 a2

−b −Dv k2−a2

)

.

Supposethat the system (8.19) is local stable, i.e.,

Sp(A) = b−1−a2 < 0,

Det(A) = −(b−1)a2+ a2b = a2 > 0.

Note that the violation of the first condition above leads to tthe Hopf bifurcation,
i.e., theonset of Hopf instabilit y is

Sp(A) ≥ 0⇔ b ≥ bH = 1+ a2 .



Fig. 8.5 Bifurcation diagram
in (a, b) parameter space,
indicating the onset of Hopf
(blue line) and Turing (red
line) instabiliti es. Here Du =
5, Dv = 12.
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The critical wavenumber is

kc =

√

1
2

(

b−1
Du

− a2

Dv

)

.

The existenceof kc is equivalent to the followingcondition

b > 1+
Du

Dv
a2 +1⇒ Du

Dv
< 1.

The instabilit y occurs, if

Det(B(kc)) ≤ 0⇔ b > bT =

(

1+ a

√

Du

Dv

)2

.

Hence, the conditions(8.18) for the system (8.19) takes the form

b < bH = 1+ a2 ,

b > bT =

(

1+ a

√

Du

Dv

)2

,

Du

Dv
< 1.

(8.21)

On Fig. 8.5 both bH (blue line), bT (red line) as functions of a are shown. The
thresholds of these two instabiliti es coincide at codimensional-two Turing-Hopf
point bH = bT

ac =
2
√

σ
1−σ

,

whereσ = Du/Dv.
From a numerical point of view, one can apply the scheme (7.19), taking the

nonlinear termsexplicitly. Parametersare



Space interval L = 50
Space discretization step △x = 0.5
Time discretization step △t = 0.05
Amount of time steps T = 4000
Diffusion coefficients Du = 5, Dv = 12
Reaction kinetics a = 3, b = 9

The result of calculation is shown onFig. 8.6. The uniform state becomesunstable
in favor of finite wave number perturbation. That is, starting with random perturb
homogeneous solution(seeFig. 8.6 (a)) oneobtainsahigh-amplitudestripepattern,
shown in Fig. 8.6 (c).

(a) (b) (c)

Fig. 8.6 Stripe pattern, obtained as a numerical solution of Eq. (8.19) by means of the modified
ADI scheme (7.19) for threedifferent timemoments: a) t = 0; b) t = 2000; c) t = 4000.


